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Scope and Purpose--Multi-level programming techniques are developed to solve decentralized planning 
problems with multiple decision makers in a hierarchical organization. There are common features of multi- 
level organization: interactive decision-making units exist within a predominantly hierarchical structure; 
execution of decisions is sequential, from top to bottom levels; each unit independently maximizes its own 
net benefits, but is affected by the actions of other units through externalities; the external effect on a 
decision maker's problem can be reflected in both objective function and the set of feasible decisions. The 
basic concepts of multi-level programming techniques are as follows: an upper-level decision maker sets his 
or her goal and/or decisions and then asks each subordinate level of the organization for their optima which 
are calculated in isolation; the lower-level decision makers' decisions are then submitted and modified by 
the upper-level decision maker with consideration of the overall benefit for the organization; and the 
process is continued until a satisfactory solution is reached. This decision-making process is extremely 
practical to such decentralized systems as agriculture, government policy, economic systems, finance, 
warfare, transportation, network designs and is especially suitable for conflict resolution. The purpose of 
this study is to propose a new concept and develop an efficient methodology to solve a general multi-level 
programming problem. 

Abstract--Multi-level programming techniques are developed to solve decentralized planning problems 
with multiple decision makers in a hierarchical organization. These become more important for 
contemporary decentralized organizations where each unit or department seeks its own interests. 
Traditional approaches include vertex enumeration and transformation approaches. The former is in 
search of a compromise vertex based on adjusting the control variable(s) of the higher level and thus is 
rather inefficient. The latter transfers the lower-level programming problem to be the constraints of the 
higher level by its Kuhn-Tucker conditions or penalty function; the corresponding auxiliary problem 
becomes non-linear and the decision information is also implicit. In this study, we use the concepts of 
tolerance membership functions and multiple objective optimization to develop a fuzzy approach for 
solving the above problems. The upper-level decision maker defines his or her objective and decisions with 
possible tolerances which are described by membership functions of fuzzy set theory. This information then 
constrains the lower-level decision maker's feasible space. A solution search relies on the change of 
membership functions instead of vertex enumeration and no higher order constraints are generated. Thus, 
the proposed approach will not increase the complexities of original problems and will usually solve a multi- 
level programming problem in a single iteration. To demonstrate our concept, we have solved numerical 
examples and compared their solutions with classical solutions. 

1. I N T R O D U C T I O N  

Multi-level mathematical programming (MLP) is identified as mathematical programming that 
solves decentralized planning problems with multiple executors in a multi-level or hierarchical 
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organization. Multi-level organization has the following common features: (a) interactive decision- 
making units exist within a predominantly hierarchical structure; (b) execution of decisions is 
sequential, from the top to a lower-level; (c) each unit independently maximizes its own net benefits, 
but is affected by the actions of  other units through externalities; and (d) the external effect on a 
decision maker's (DM's) problem can be reflected in both the objective function and the set of 
feasible decision space. The basic concept of the MLP technique is that an upper-level DM sets his 
or her goal and/or decisions and then asks each subordinate level of the organization for their 
optima which are calculated in isolation; the lower-level DM's  decisions are then submitted and 
modified by the upper-level DM with consideration of the overall benefit for the organization; and 
the process is continued until a satisfactory solution is reached [1, 2]. This decision-making process is 
extremely practical to such decentralized systems as agriculture, government policy, economic 
systems, finance, warfare, transportation, network designs, and is especially suitable for conflict 
resolution. 

During the last three decades, many methodologies have been proposed to solve MLP problems. 
Most of these methods are based on concepts of vertex enumeration and transformation 
approaches. The former is to seek a compromise vertex by simplex algorithm based on adjusting 
higher level control variables. It is rather inefficient, especially for large size problems. Although 
there is a short-cut, generality will be lost. The latter involves transforming the lower-level 
programming problem to be the constraints of the higher level by its Kuhn-Tucker  ( K - T )  
conditions or penalty function. Because non-linear or Lagrangian terms appear in constraints, 
the auxiliary problems become complex and sometimes unmanageable. 

Presently, solvable problems for MLP are bi-levet programming problems (BLPPs), bi-level 
decentralized programming problems (BLDPPs) and three-level programming problems (TLPPs). 
Even though these problems are as simple as linear BLPPs, they are categorized as non-convex 
programming and proven to be NP-hard by Ben-Ayed and Blair [3]. Furthermore, no general 
hypothesis on cost functions which will guarantee a Pareto optimal or efficient solution for a linear 
BLPP is obtainable, unless both objectives coincide, in which case, both agents completely 
cooperate and lead to a Pareto optimal solution of BLPP. 

While most existing methods are computationally inefficient, we use the concepts of membership 
functions as well as multiple objective optimization to develop a fuzzy approach for solving the 
above problems. We extend Lai's satisfactory solutions [4] and propose that the upper-level DM 
defines his or her objective and decisions with possible tolerances which are described by member- 
ship functions of fuzzy set theory and fuzzy decision. This information constrains the lower-level 
DM's  feasible space. A solution search relies on changes of membership functions expressing 
satisfactory degrees of potential solutions for both upper and lower level decision making, instead of 
vertex enumeration and no higher order constraints are generated. Unlike vertex enumeration, we 
do not pre-assume that the optimal solution exists at corner points. On the other hand, we consider a 
satisfactory concept is more acceptable than optimality because it is difficult to define a solid 
optimality in a multi-person, decision-making process and it is questionable by definition to restrict 
the potential solutions at corners. Potential satisfactory solutions are those in the non-dominated 
region. Thus, the proposed approach is very efficient and will not increase the complexities of the 
original problems. As Bard's grid search algorithm [5], and Wen and Hsu's bicriteria algorithm [6] 
and two-phase approach [7], multiple objective optimization concepts are then used to solve our 
auxiliary MLPP. 

In the following pages, we first provide a historical review of traditional approaches. In Section 3, 
we further discuss the Kth-best approach and propose our fuzzy concept and approach for solving 
BLPP. By extending the proposed concept and methodology of BLPP, BLDPP, MLPP and 
MLDPP are solved in Section 4. To demonstrate our concept, numerical examples are solved 
and their solutions are compared with classical solutions. Finally, Section 5 draws some concluding 
remarks and proposes future studies. 

2. LITERATURE REVIEW 

BLPP is usually thought of as two DMs in two different hierarchical levels and is similar to static 
Stackelberg games, a special case of two-person, non-zero sum, non-cooperative game, and with full 
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information. It is a nested optimization model involving two problems, an upper one and a lower 
one. To discuss BLPP, let a vector of decision variables (Xl, x2) be partitioned among two planners 
where the upper-level DM has control over vector x 1 and the lower-level DM has control over 
vector x2, and let the performance functions fl  and f2 of the two planners be linear and bounded. 
Then a linear BLPP can be stated as: 

max fl  (xl, x2) = Cl lXl  -]- e12x2,  (1) 
Xl 

where x2 solves: 

maxf2(x l ,  x2) = c21Xl -J- e22x2, (2) 
X2 

s.t. (Xl,Xe) ~ Fe = {(xl ,xe)lAlxl  +Aex2 ~< b and Xl,X2/> 0} 

where c11, Cle, c21, Cae and b are constant vectors, and A t and A2 are constant matrices. For  a given 
xl, let G(x~) denote the set of optimal solutions to the following lower-level problem: 

max f~(xe)  = c22xe, (3) 
X2 CFI(XI) 

where F1 (xl) = {x2 ]A2x2 ~< b - A 1 x 1 } represents the upper-level DM's  feasible decision space. The 
set of rational reactions off2 over F 2 can also be defined as: 

Sf2(F2) = {(Xl, x2)t(xl, x2) E F2 and x 1 E G(xl)}. 

It can be shown that multiple local optima can exist and an implicit search can be defined [8]. From a 
mathematical viewpoint, this problem is that of maximizing a piecewise linear function over a 
polyhedron [9]. The algorithms involving BLPP are developed earliest among the MLPPs. Their 
procedures are thus well-structured and widely diversified. In general, they can be grouped as vertex 
enumeration and transformation approaches. 

Bialas and Karwan, pioneers for BLPP, present a vertex enumeration approach, Kth-best method 
in 1978 and restated it in Refs [10, 11]. Since the decision variable space for two levels is the same 
(besides one additional equation for control variable from the upper-level), an optimal solution will 
thus occur at an extreme point of F 2. The extreme point search is the basis for the Kth-best 
algorithm which will be solved by a simplex method. Although it is developed to find a global 
optimal solution, computational and storage requirements of  the algorithm increase dramatically 
with the number of variables. It will result in more serious problems when applied to a general k- 
level problem. Candler and Townsley [12] propose an implicit search algorithm that focuses on 
generating an enumerating bases from lower-level activities, but no progress has been made for a 
large system. 

Brad's grid search algorithm (GSA) begins by setting up a parameterized linear program whose 
objective function for the corresponding problem is formulated as a convex combination of the 
objective functions from each level. He demonstrates that GSA generally outperforms the other four 
methods. Nevertheless, Haurie et al. [13] provide a counter-example for proving that the algorithm 
doesn't always obtained the design solution, and Ben-Ayed and Blair show that the solution given 
may even be local. Concurrent to GSA, Bard [14] further suggests a set of necessary conditions for 
BLPPs and general BLPPs which result in a potentially equivalent mathematical program 
formulation for the bi-criteria case. A relationship between the solution to a BLPP and Pareto 
optimality is also discussed. On the other hand, Clark and Westerberg [15] demonstrate with a 
counter-example that Bard's necessary conditions are incorrect. 

Based on Bard's algorithm, 12Inlfi [16] proposes a technique of bi-criteria programming (BCP) to 
solve BLPP. The techniques for BCP require less computational effort than those for bi-level 
programming. However, Candler [17] shows one theorem in Refs [5, 14], used by Unlfi, to be 
erroneous. Wen and Hsu [6] also propose a bicriteria algorithm and point out that the BCP 
algorithm is not suitable for all BLPP, and Marcotte and Savard [18] show that it is possible to 
design a linear bi-level problem whose optimal solution is not Pareto optimal. 

When the optimal solution is not Pareto-optimal, Wen and Hsu [7] use multiple objective solution 
techniques to obtain an efficient solution in the proposed feasible contraction set and suggest three 
solutions: the threat-point, ideal-point and ideal-threat-point dependent solutions. 
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Transformation approaches are usually based on replacing the two-level problem with its K - T  
conditions. In this way, BLPP can be formulated as the following first-level auxiliary problem: 

m a x  f j  (Xl, X2) = e 11X1 -t- e12x2, (4) 
XI~X2 

s.t. Alxl  + A2x2 ~< b, 

w ( A I X  1 + A 2 x  2 - b)  = 0, 

wA 2 = c 2 2  ~ 

XI,X2,  W ~ O. 

where the second set of constraints are complementary slackness conditions (CSC) which make (4) a 
non-convex programming problem. To solve this nonlinear programming problem, Bialas and 
Karwan [1 l] propose a parametric complementary pivot (PCP) algorithm which iteratively solves a 
slight perturbation of the system. It can be viewed as an implicit enumeration of the lower-level 
optimal bases, and can be extended to solve TLPP. Jfidice and Faustino in Ref. [9] modify the PCP 
algorithm to guarantee convergence towards a global optimum; however, it can be low efficiency 
because of the branch-and-bound basis. Ben-Ayed and Blair show that the PCP method may not 
converge to optimality. 

Fortuny-Amat and McCarl's [19] approach enforces the CSC by transforming the formulation 
into a much larger mixed integer programming problem. Bard and Falk [20] propose a series of 
transformations for CSC to transform product terms into a series of equalities without altering the 
solution, and then use the branch-and-bound technique to partition the feasible region and to 
obtain a global optimal solution. Bard and Moore [21] modify the branch-and-bound algorithm 
with a 0-1 variable and extend it to solve quadratic BLPP, and claim that the algorithm's 
performance and robustness is superior to all contenders. However, Ben-Ayed states that for the 
larger problem the efficiency of the algorithm is still constrained by the exponential growth of the 
branch-and-bound tree. Wen and Yang [22] suggest a heuristic procedure for solving the mixed 
integer linear BLPP. 

Recently, Anandalingam and White [23] used penalty function to develop a new approach based 
on a duality gap for solving a nonlinear convex objective function. Although their approach can be 
proved to be more efficient than approaches based on vertex enumeration and K - T  conditions, and 
can provide a global optimal solution, the method is illustrated by a small example only and no 
computational result for large-scale problems is reported. The relationship between each level is 
rather implicit and may be not correctly represented. 

3. F U Z Z Y  A P P R O A C H  F O R  B L P P  

To discuss the multi-level programming problem, it is better to start with BLPP for its simplicity. 
Characteristics of BLPP include the following: (a) interaction: the sequence for choosing strategy is 
top-down, but an upper-level DM will accept reactions from the lower-level; (b) non-cooperation: 
each level DM will seek his or her own interests, i.e. optimize their individual objectives, and no one 
dominates the entire problem; (c) non-zero sum: the loss for the cost of  one level is unequal to the 
gain for the cost of the other level; and (d) full information: each level DM is fully informed about all 
prior choices when it is his or her turn to move. To meet these strategies and reactions, Bialas and 
Karwan propose the following Kth-best algorithm: the solution search starts at the individual 
optimum of the upper-level DM, and the optimal solution is reached if it matches the lower-level 
DM's  optimality; otherwise, search for the neighboring corner (extreme) points of the previous 
point until the upper-level DM's  proposed decision matches the lower-level DM's  optimality. 
Through this algorithm, we can see how the upper-level DM decreases his or her objective value in 
order to make a compromise for the lower-level DM's  optimality. In fact, an implicit compromise 
process has been carried out through the solution search. Let us consider an extreme situation where 
the independent solutions for two DMs are located at two neighboring vertices. The Kth-best 
algorithm will force its solution to be either of them, depending on who goes first; i.e. the DM 
who moves first absolutely dominates the solution. Since the conflict has not been solved yet, the 
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Kth-best's solution seems less meaningful. A compromise solution between these two extreme 
points should be more practical. Indeed, this phenomenon happens in all problems. The funda- 
mental of the Kth-best algorithm is that the optimum should exist among corner points and that the 
corner point search leads to complicated enumeration. As mentioned above (see Refs [24, 25] also), 
it is difficult to define a solid optimality for multi-person, decision-making problems. Compromise 
or coordination are usually needed in order to reach a solution, even in a non-cooperative 
phenomenon. 

For a large scale problem, the Kth-best algorithm reaches the desired solution rather slowly 
because the simplex algorithm will have to search a huge set of vertices. Second, DMs do not know 
the relationship between levels and the possible effects of individual actions on each other, i.e. 
lacking explicit information, especially about goal achievements of each DM. In the third point, the 
procedure presents that yield always happens with the upper-level DM, while the lower-level DM 
obtains some profits in taking advantage of the loss of the former, i.e. decreasing sequentially from 
the optimum of the upper-level if it is not satisfied by the lower-level. It obviously violates natural 
law, boss first, in a hierarchy. Finally, even in a decentralized organization, a non-dominated 
solution might be more meaningful than classical solutions. In this case, other non-corner, non- 
dominated solutions may be good enough and, at the same time, computational difficulty caused by 
enumeration can be avoided. In many other cases, Kth-best solutions are dominated and thus not 
very attractive for both DMs, especially in practice. 

Similar to the Kth-best algorithm, the transformation approach based on K - T  conditions 
requires the upper-level DM's solution satisfy the lower-level DM's optimality conditions. That 
is, the lower-level DM's optimality conditions become rigid constraints of the upper-level DM's 
problem, or he or she dominates the solution search process. Thus, K - T  conditions may also not be 
practical for solving real-world problems. 

Instead of searching through vertices as the Kth-best algorithm, we here propose a supervised 
search procedure (supervised by top-level DM) which will generate a (non-dominated) satisfactory 
solution for a multi-level programming problem. In this solution search, the upper-level DM 
specifies preferred values of his or her control variables and goals with some leeway. This 
information is modeled by membership functions of fuzzy set theory and passed to the lower- 
level DM as his or her additional constraints or boss's requirements. The lower-level DM should not 
only optimize his or her objective but also try to satisfy the upper-level DM's goal and preference as 
much as possible. He or she realizes that without seriously considering the boss's goal and 
preference, the proposed solution will very possibly be rejected and the solution search will be a 
lengthy one. The lower-level DM then presents his or her solution to the upper-level DM. If  the 
upper-level DM agrees to the proposed solution, a solution is reached and it is called a satisfactory 
solution here. If  he or she rejects this proposal, the upper-level DM will need to re-evaluate and 
change former goals and decisions as well as their corresponding leeway or tolerances until a 
satisfactory solution is reached. Figure 1 depicts the proposed decision-making procedure. This 
strategy does not violate the non-cooperate nature--both  level DMs first seek their optimal 
solutions in isolation. However, it does need some kind of coordination with the classical 
approaches. 

Mathematically, the upper-level DM first solves the following problem: 

m a x f l ( X l , X 2 )  = CllXI + elzx2, (5) 

s.t. (x1,x2) C F 2 = {(Xl ,X2)lAlX 1 + A 2 x  2 ~ b , x  1 and x2 >~ 0}, 

whose solution is assumed to be (Xl U, x~, f ~ ) ,  and the lower-level DM independently solves: 

m a x f 2 ( x l ,  x2) = e21xl + c22x2, (6) 

s.t. (Xl,X2) E F 2 = {(Xl,X2)]A1x 1 + A 2 x  2 > / b , x  I and x2 ~> 0}, 

whose solution is assumed to be (x~, x2L,f2L). The above solutions are then disclosed to both DMs. If 
(Xl U, x~) = (x~, x~), an optimal solution is reached. However, two solutions are usually different 
because of conflicts of nature between two objectives. The upper-level DM understands that using 
the optimal decision x~ as a control factor for the lower-level DM is obviously not practical. It is 
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Fig. 1. The flow chart for the proposed fuzzy approach.  

more reasonable to have some leeway or tolerances that give the lower-level DM a wider feasible 
domain to search for his or her optimal solution, and that will significantly reduce searching time or 
iterations. The range of the decision on Xl should be "around Xl u with its maximum tolerances Pl?' 
The most preferred decision is XlU; the worst acceptable decision is at x~ - Pl and x~ + Pl, and that 
satisfaction or preference is linearly increasing within the interval of [ x ~ -  Pl, x~] and linearly 
decreasing within [Xl u, x~ + pl], and other decisions are not acceptable. This information can 
then be formulated as the following membership functions of fuzzy set theory (see Lai and Hwang 
[281): 

[xl -- (Xl U --Pl)]/Pl, ifxU --Pl ~< x, ~< xlU; 

/'Zx] (X1) ~- [( XU -~- P l )  --  X1)] / /Pl ,  if xl u < x I ~< xl u + p, ; (7) 

0, otherwise 

which is also depicted in Fig. 2. 
Meanwhile, it is very important that the upper-level DM should specify his goal with his or her 

tolerance to the lower-level DM in order to direct or supervise him or her to search for solutions in 
>~ u the right direction. The upper-level DM's goal may reasonably consider that all f l  ~ - f l  are 

absolutely acceptable and all f l  < f ' l [ = f l ( x } ,  x2L)] are absolutely unacceptable, and that the 
preference within If'l, f ~ ]  is linearly increasing. The fact that the lower-level DM obtained the 

L L • • • t optimum at (Xl, x2 ), which in turn provides the upper-level DM the objective value off1, makes any 
f l  < f ~  unattractive in practice. The following membership function can then be reasonably 
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~xl 
1 

XlU-pl XlU I XlU+pl 
; 

X I 

. . . . . . . . .  

fl ' / f10 

/~fa (f~) > /3 

f l  

Fig. 2. The membership functions for x I and f~. 

assumed: 

I, iff~ (x) > f ~ ;  

/zfl[fl(x)] = [ f l ( x ) - - f ~ ] / [ f ~  --f~], i f f~  ~<fl(x) <~flV; (8) 

0, i f f l (x)  < f ' l ,  

which is also illustrated in Fig. 2. The lower-level DM now optimizes his objective under the new 
constraints o f " x l  is about x~" and "fl is somehow near to or greater t h a n f l  u ' '  which are modeled 
by the membership functions (7) and (8). With (3), (7) and (8), the lower-level DM then obtains the 
following problem (see Lai and Hwang [26]): 

max f2(xl, x2) = e 2 1 x  1 -}- c 2 2 x 2 ,  
X2 

s.t. A1x 1 q- A2x 2 ~< b, 

x 1 = Xl U 

f l  (x) >~ u 

o r  

xl andx2~>O, 

max f2(xl, x:) = c=ix I + CnXe, 
X2 

s.t, Alxl + A2x2 ~< b, 

/~xl(Xl) /> aI, 
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(x)] >//3, 

xl andx21>0 ,  

E [0, 1] and/3 c [0, 1], 

where a (a row vector) and/3 are minimum acceptable degrees of satisfaction or preference for the 
decision x I and objectivefi (x), respectively, and I is a column vector with all elements equal to ls 
and the same dimension as #x~(xl) or Xl. The feasible ranges constrained by #x~(xl)>1 a and 
#f~ If1 (x)] ~>/3 are depicted in Fig. 2. Obviously, the lower-level DM can analyze various solutions 
corresponding to the upper-level DM's satisfactory levels a and/3. 

For each possible solution available to the upper-level DM, the lower-level DM may be willing to 
build a membership function for his or her objective so that he or she can rate the satisfaction of 
each potential solution. Here, assume that the lower-level DM has the following membership 
function for his goal: 

#f2[f2(x)] = [fz(X) - f l ] /[ f I£  -f'2], 
O, 

iff2(x) > f L ;  
.< L i f f ~  ~<j~(x) "~.f2 ; 

if/2(x) < f ~ ;  

(9) 

where f ~  = f2 (xT). Obviously, the above membership function/z is a one-to-one mapping within a 
compact interval o f f  } and f~.  Because f } is the best solution of (6), f2 (x) > f }  is impossible while 
the upper-level DM gives more constraints to the lower-level DM. The lower-level DM will not 
accept anyf2(x ) < f ~  for the same reason as the upper-level DM, discussed above. Therefore, the 
lower-level DM has #f2 [f2(x)] = If2(x) - f '2] /[ f  L -fl2] and the following auxiliary model: 

max 6 = #f2 [f2(x)], 

s.t. Alx 1 + A2x 2 ~.~ b, 

#x, (xl) >~ aI, 

/'Lfl [fl (x)] >//3, 

xi and x2 >i O, 

or 

a E [0, 11 and/3, 6 E [0, 1], 

max 6, 

s.t. AIX l + A2x 2 ~< b, 

#x,(Xl) ~ aI ,  

~fl [fl (x)] >~/3, 

/zf2[f2(x)] >/6, 

Xl andx21>0,  

a c [0, 1] and/3, 6 E [0, 1], 

where 6 is the satisfactory degree of the lower-level DM who searches for a solution with a higher 6 
value under the consideration of a and/3 values. To resolve conflict between both DMs and to avoid 
the upper-level DM's rejection, the lower-level DM should try to maximize a , /3  and 6 simulta- 
neously, that is: 

max{6, a,/3}, 

s.t. AlX 1 + A2x 2 ~ b, 

#x,(XI) >~ aI ,  

#I, If, (x)] >i/3, 
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>/6, 

Xl and x2 >I 0, 

a E [0, 1] and/3, (5 c [0, 1]. 

If  the rain operator is used to aggregate the satisfactory levels or A = min {a,/3, 5}, the above 
problem will become: 

max A, 

s.t. AIX 1 q- A2x 2 /> b, 

/~x, (xl)/> AI, 

#f~ [fl (x)] /> A, 

Xl and x2 >/0, 

AE [0, 1], 

maxA, (10) 

s.t. A1x 1 + A2x 2 ~< b, 

[( XU + Pl) -- X1]/Pl /> AI, 

[Xl - -  ( XU - -  P l ) ] / P l  ~> AI, 

#f~ [f~(x)] = [fl(x) - f ~ ] / [ f ~ - f ~ ]  >1 A, 

#A[f2(x)] = [f2(x) - f~2]/[f~£ - f~]  >~ A, 

x l andx2~>0,  

AC [0, 1]. 

Equation (10) is actually a fuzzy or max-min programming problem by applying Bellman and 
Zadeh's [27] max-min decision. 

If  the upper-level DM is satisfied with the solution of (10), a satisfactory solution is reached. 
Otherwise, he or she should provide new membership functions for the control variable and objective to 
the lower-level DM until a satisfactory solution is reached. Combined with set of control decisions and 
goals with tolerance, this solution becomes a satisfactory solution for (1) and (2). 

Note: the min operator is noncompensatory and thus may not be good enough to model such 
situations that trade-offs between 6, o~, /3 are allowable or even unavoidable. In those cases, 
compensatory aggregation is much more meaningful. Among various operators, the most appro- 
priate compensatory operators for solving MLPP are: algebraic product, algebraic sum, bounded 
product, bounded sum, Hamacher's min and max, Yager's min and max, Dubois and Prade's min 
and max, Werners's "fuzzy and" and "fuzzy or" and Zimmermann and Zysno's F operator (see Lai 
and Hwang [26] for details). 

As to membership functions, the linear (and triangular) forms are chosen for computational 
efficiency. Other membership functions such as piecewise, exponential, hyperbolic, inverse hyper- 
bolic or some specific power functions may be needed for pragmatical reasons. Many of these 
nonlinear functions can be transferred into equivalent linear forms by variable transformations. 
Therefore, linear forms are only discussed here without losing generality. Indeed, membership 
functions are essential while applying fuzzy approaches to solve real-world problems. They are 
generated basically by heuristic determination, reliability concerns, theoretical demand and human 
perception. It is not the purpose of this study to discuss various function forms and methods to 
generate membership functions. Concise discussion on these topics has been given by Lai and 
Hwang [26]. 

To illustrate this approach, let us consider the following example. 

or 
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Example 1 

One export-oriented country is concentrating on two important products, 1 and 2, which are 
manufactured by ABC company on given capabilities. Product 1 yields a profit of  $1 per piece and 
product 2 a profit of  $2 per piece. Product 1 can be exported, yielding a revenue of $2 per piece from 
foreign countries, while product 2 needs the imported raw materials of $1 per piece. There are two 
level DMs related to this case, Le. government (upper-level) and the manager of  the company 
(lower-level), and each one can handle one decision variable only, Xl and x2, respectively. Two 
objectives are established respectively: (1) effect on the balance of trade f l  (x), i.e. maximum amount 
of  exports; and (2) profit on the product f2(x), i.e. maximum profit. The problem can then be 
formulated as: 

max f l  = 2x] - x 2  (effect on the export trade), 
Xl 

where x 2 solves 

maxf2 = x 1 + 2x2 
X2 

s.t. 3x 1 --  5 x  2 ~ 15 

3Xl -- X2 ~< 21 

3Xl + X2 /> 27 

3 x  1 + 4 x  2 ~< 45  

x I q- 3 x  2 <~ 30  

x] a n d x 2 > / 0 .  

(profit on the products), 

(capacity), 

(management), 

(space), 

(material), 

(labor hours), 

whose constraint set is denoted by X. The Kth-best solution is (xl, x2) - (8, 3) at K = 2. In addition, 
the optimum for the upper-level objective is f l  = 13.5 at (7.5, 1.5) and for the lower-level objective is 
f2 = 21 at (3, 9). The decision variable and objective function spaces are shown in Figs 3 and 4, 
respectively. 

The proposed approach first finds individual optimal solutions by solving (5) and (6) and obtains 
(XlU,X2 u) (7.5.1.5) and f l  u = 13.5 and ]" L = ( X l ,  x2) = (3,9) a n d f ~  = 21 . fT  = 13.5 and let us assume 

f ]  = 0 (only positive is meaningful here) instead of 3 andf~  = 10.5. Assume the upper-level DM's  
control decision x I is around 7.5 with the negative and positive-side tolerances 4.5 and 0.5, 
respectively. By (7), (8) and (9), membership functions t~,( '),  #f~ (') and #f2(') are built. The 
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Fig. 3. The decision variable space for Example 1. 
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Fig. 4. The objective function space for Example 1. 
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lower-level DM then solves the following problem of  (10): 

max A, 

s.t. x E X, 

xl >~4.5A+3, 

xl <~ 8 - 0.5A, 

2xl - x 2  ~> 13.5A, 

x 1 4- 2x 2 - 10.5 ~> 10.5A, 

A~ [0, 1], 

whose compromise solution is f *  = (f*l,f~) = (9.29, 17.72) at x* = (7.26, 5.23) with the overall 
satisfaction of  both DMs A = 0.69. Realized satisfactory levels are (/Zx~, #),, #),) = (0.95, 0.69, 

' n  * * 0.69). If  the upper-level DM's  total satisfactory level At --- ml {#x~, #f, }, then our solution provides 
/~1 ~ 0.69 and A2 (of the lower-level DM) = 0.69. On the other hand, the Kth-best solution 
f =  (13, 14) at x = (8,3) has (#:q,#f~,#f,_)= (0.0,0.96,0.33) and thus A l = 0 . 0  and A2--0.33. 
Obviously, our solution is better than that of the Kth-best in terms of  satisfactions of  both 
DMs. 

4. EXTENSIONS 

The proposed approach can efficiently solve not only BLPP, but also bi-level decentralized 
programming problems, multi-level programming problems and multi-level decentralized program- 
ming problems which will be discussed in Sections 4.1, 4.2 and 4.3. 

4.1. BLDPP 
A bi-level decentralized programming problem (BLDPP) is characterized by one decision center 

at the top level and p divisions at the bottom level with the assumption that decision units in the 
lower level are independent and under control of the higher level. Let us first define the following 
notations: f~i(x) represents the objective function of the ith division of the kth level; Cki / is the cost 
coefficient of  the decision variable xj for the ith division of  the kth-level. According to the definition, 
in a bi-level decentralized organization, k = 1 (the upper-level) and 2 (the lower-level), and 
i = 1 ,2 , . . . , sk .  sl = 1 for the upper level and s2 = s for s divisions constitute the lower level. 
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BLDPP can then be defined as: 

where X21 , X 2 2 ~ . . .  ~ X2s solve 

Hsu-Shih Shih et al. 

max f l l  (x) ---- ~]Cll.]X]; (11) 
Xll 

max f21 (x) = ~]c21,/xj; 
X21 

max fzs(x) = ~/C2sjXj; 
X2s 

s.t. Z A k i X k i  ~ b ,  k =  1,2 and i =  1 ,2 , . . . , sk ,  
Vk, i 

X/>~ 0, j = 1 ,2 , . . . , n ,  

wherej  = 1 ,2 , . . . ,  n representing thej th  decision variable, and the constraint set is denoted by X. In 
addition, Ok, i{xkilVk, i} = {x l, x2,. •., x, } and x~ are decisions of the s divisions in the bottom level. 

To solve (11), we can extend the concept and approach discussed in Section 3. We first obtain 
individual optimal solutions: 

f*ki = fki(X*ki) = max fki(x), Vk, i. (12) 
x c X  

Then, f t k i  ~ - m i n k , i f k i ( x * k i ) .  And, if the tolerance vector Pl is given by the upper-level DM, 
membership functions ~Xll (xll) and #ki[fki(x)] can then be formulated by using (7), (8) and (9). 

The lower-level DMs then have the following problem: 

max f21 (x) = ezlx21; (13) 
X21 

m a x f z / x )  = e z s X z s ;  
X2s 

s.t x c X, 

fl, Xlt(Xlm ) ~.~ O~, 

#ll[fll(X)] >//3, 

a E [0, 1] and/3 E [0, 1], 

which is a multiple objective programming. Note that each division has its own objective and all 
divisions constitute the lower (or second) level of the organization. Because divisions in the same 
level should have similar positions in decision processes, multiple objective methodologies (see Lai 
and Hwang [28]) are then reasonable to model this phenomenon. As in Section 3, we here use max-  
min programming to solve (13) and obtain the following auxiliary problem: 

maxA, (14) 

s.t. x E X, 

Px. (x11) >~ AI, 

A, 

#2i[f2i(x)] >~ A, i =  1 , . . . ,  s, 

[0,1], 

whose solution is then a satisfactory solution for the BLDPP problem of (1t) if the upper- 
level DM is satisfied with it. If  the upper-level DM is not satisfied with the current solution, 
he or she will then modify the membership functions until a satisfactory solution is 
reached. 
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Example 2 

Consider  the following B L D P P  [29]: 

m a x f ~  = Xl +Yl  + 2 y 2  +Y3, 
Xl 

where Yl, Y2 and Y3 solve: 
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where x3,. • •, xk solve 

where Xk solves 

where X2,  X 3 ~ . . .  ~X k solve 

max  fe (x)  = ~jc2jxj, (2nd level) 
X2 

m a x  fk (x) = Zj ekj xj, (kth level) 
Xk 

s.t. EkAkXk~<b, k = l , 2 , . . . , k ,  

x i I > 0 ,  j = l , 2 , . . . , n ,  

where Uk{xklk = 1 , 2 , . . . ,  k} = {xl,  x 2 , . . . ,  x ,}  and xk is the contro l  variable vector  o f  the kth level 
D M .  Let  us denote  the const ra in t  set o f  (15) as X. 

To  solve (15), the top-level D M  provides his or  her preferred ranges o f f l  and Xl to the second- 
level D M  and the second-level D M  solves his or  her p rob lem with the addi t ional  preference 

m a x  f21 = --xl + 3yl -- Y2 - Y3; 
Yl 

max  f22 = - x l  - Yl + 3y2 - Y3; 
Y2 

max f23 = - X l  - Yl - Y2 + 3Y3; 
Y3 

S.t. 3x  I + 3yl  ~ 30, 

2xl t Yl ~< 20, 

Y2 ~< 10. 

Y2 ~-Y3 ~< 15. 

Y3 ~< 10, 

xl + 2y~ + 2y2 + Y3 ~< 40, 

xl ,yl ,yZ,y 3 >10. 

The individual  op t imal  solut ions o f  the top and  b o t t o m  level D M s  a r e f ~  1 = 35 ( o r f ~ l  in Section 3) 
at x 11. = (xl,Yl,Y2,Y3) = (10,0, 10,0) or  (5, 5, 10, 3 ) , f ~ l  = 30 at  x 21. = (0, 1 0 , 0 , 0 ) , f ~  2 - 30 at 
X 22. = ( 0 , 0 ,  10,0) and f~3 = 30 at  X 23. ~--- ( 0 , 0 , 0 ,  10). Assume tha t  ftll= 10 and f ~ l  = f 2 2  = 

f~3 = 0 for  negat ive objective values are not  preferred,  and  tha t  for  xl the upper-level  D M  fully 
satisfies all values between 5 and 10, and the negative and positive-side tolerances are 5 and 0, 
respectively. I ts  membersh ip  funct ion then has the same fo rm as (8). 

By (14), we obta in  a sat isfactory solut ion f = ()ql, f21, f22, f23) = (31.07, 6.43, 6.43, 6.43) with 
7 = 0.21 at x = (1.07, 7.5, 7.5, 7.5). In compar i son  with Ananda l i ngam ' s  solut ion [29] f = (35, 5, 
15, - 5 )  at x = (5, 5, 10, 5), the p roposed  solution is much  acceptable  for  all DMs.  

4.2. MLPP 

A multi-level p r o g r a m m i n g  p rob lem (MLPP)  can be defined as a k-person,  non-zero  sum game 
with perfect  in fo rmat ion  in which each player  moves  sequentially f rom top-down.  This p rob lem is a 
nested hierarchical  s t ructure in which there are k levels o f  D M s  [30] and can be represented as: 

m a x f l ( x )  = ~icljXi, ( l s t  level) (15) 
Xl 
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information from the top-level DM as discussed in Section 3. The same decision-making process as 
that of BLPP proceeds until a satisfactory solution is reached. By following the satisfactory 
solution, both DMs individually rebuild or build their own (revised) membership functions which 
become the additional constraints of the third-level DM. The solution of the third-level DM is 
proposed to the upper levels; if any upper levels are not satisfied with this proposal, the third-level 
DM will then solve a new problem with new membership functions from the upper-level DMs until 
a satisfactory solution is reached. This procedure continues until the kth-level DM's solution 
satisfies all DMs and the final solution will be a satisfactory solution for (15). 

With the required membership functions obtained by (7) and (8), the kth-level DM has the 
following problems: 

maxf~(x), 
Xk 

s.t. x E X, 

/Zx,(Xl) /> a l I  and #A[fl(x)] >~/31, 

/%(x2) >~ a : I  and #f2[f2(x)] >1/32, 

(16) 

~L~x(k_, ) [X(k-1)) ~ OZ(k-U I and #f,k-,)[J(k-u(x)] ~> /3(k-U, 

a l , . . . , a ( k  1) ¢ [0,1] and/31, . . .  ,3(k_l) e [0, 1], 

for k = 2, 3 , . . . ,  n. A straightforward extension of (10) is: 

max A, (17) 

s.t. x E X, 

~x,(Xl) >~ AI and/~fl [fl(x)]/> A, 

~tLx2(X2) ~ AI and #f2[ f2(x) ]  ~ .)k, 

t~x/k t~(X(k_l)) > AI and #f/k_,/[3~k_ u(X)] >~ A, 

a [0,11, 

where A = min {Ctl,...  , c~(k_ 1),/31,...,/3(k 1), /3k}. If the solution of (17) does not satisfy some of 
the upper-level DMs, they should then modify their membership functions, and resolve (17) with 
new preference information described in Section 3. 

It is noted that if there is a constraint which makes the problem infeasible (over-restricts the 
decision space), this constraint should be examined carefully and may be given a tolerance in order 
to generate a reasonable, feasible domain. 

Example 3 

Consider the following TLPP [23]: 

max fl  = 7xl + 3x2 - 4x3, 
Xl 

where x2 and x3 solve 

max f2 = x 2 .  
X2 

where x3 solves 

max f3 = X3, 
X3 
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s . t .  x I -~- x 2 + x 3 ~ 3, 

X 1 - ' ~ X  2 - - X  3 ~<1, 

x l  + x2 + x3 >~ 1, 

- x l  + x2 + x3 ~ 1, 

x3 ~< 0.5, 

xl ,  x2 and x3 >~ 0, 

whose const ra in t  set is depicted as X. 
The  individual  op t imal  solutions a r e : f~  = 8.5 ( o r f T  in Section 3) at x 1. = (1.5, 0, 0 .5 ) , f~  = 1 at 

x 2. = (0, 1,0) or  (0.5, 1, 0.5) and f ;  = 0.5 at  x 3. = (1.5,0,0.5) ,  (0.5, 1, 0.5) or (0, 0.5, 0.5).fl l  = 3, 
f ~  = 0 and f ~  = 0. Also, assume tha t  contro l  decision Xl should be a round  1.5 with negative and 
posit ive-side tolerances 1.5 and 0, respectively. The  sat isfactory solution of  (17) with k = 2 is 
f = ( f l ,  f2) = (6.18, 0.58) at  x = (0.92, 0.58, 0.5) with the sat isfaction level A = 0.58. Assume that  
the top-level  D M  satisfies this solution. Then  we go to the third level. 

I f  the above  solut ion is not  acceptable,  the top-level D M  m a y  modi fy  his/her membersh ip  
funct ions as follows: f ~  = 6.18 and f ~  = 0; and x 1 should be a round  0.95 with negative- and 
positive-side tolerances 0.95 and 0, respectively. The  2nd-level D M  p rov ides : f~  = 0.58 a n d f ~  = 0; 
and x2 should be a round  0.58 with negat ive and positive-side tolerances 0.58 and 0, respectively. 
Then,  the 3rd-level D M  has the p rob lem of  (17) with k = 3  whose solution is 
f =  ( f l ,  f2, f 3 ) =  (6.18, 0.58, 0.5) at x =  (0.92,0.58,0.5) with the sat isfactory level A =  1.00. 
Because of  A = 1.00, this solution is acceptable  under  pr ior  preference in fo rmat ion  or membersh ip  
functions.  However ,  upper-level  D M s  m a y  want  to change their membersh ip  functions,  then 
p rob l em (17) with k = 3 will be resolved when a sat isfactory solution which satisfies all upper-  
level D M s  is reached. 

In compar i son  with A n a n d a l i n g a m ' s  s o l u t i o n f  = (4.5, 1,0.5) at x = (0.5, 1,0.5) [5], our  solution 
shows tha t  the top-level D M  has a leading posit ion. 

4.3. M L D P P  

The multi-level decentral ized p r o g r a m m i n g  p rob lem ( M L D P P )  is a general decentralized 
p lanning p rob lem which includes a multi-level s tructure and more  than  one division in each 
lower level. The  hierarchical  s t ructure can be represented in Fig. 5. Thus,  the proposa ls  in Sections 
4.1 and 4.2 can be extended to solve some specific M L D P P s .  Because of  its complexity,  it is difficult 
to p ropose  a general me thodo logy  to solve a general M L D P P ,  especially when the constraint  set has 
var ious  effects on all levels' DMs.  I f  the constraints  can be decomposed  to individual levels and 
divisions, then we can decompose  the original s tructure into substructures which are composed  of  
(k - 1) single upper-level  D M s  and m a n y  divisions or D M s  forming  the lower level in the kth-level. 
Fo r  example,  if we have a three-level decentralized p r o g r a m m i n g  p rob lem (TLDPP)  (see Fig. 5 too), 
we will have s subprob lems  and each subprob lem is composed  of  {center f~ --+ division f z i  ---+ 
subdivision, f3t, t = 1, 2 , . . .  ,ti}, i = 1 , 2 , . . .  ,s, if the constra int  set can be decomposed  into s 
individual  ( independent)  subsets. The  concepts  discussed in the previous sections can be applied 
s t ra ight forward  to solve these s subprob lems  as: 

m a x f l ( x )  = ~ j c t i x  j ,  ( ls t  level) (18) 
Xl 

where X 2 i  , X 3 i  1 ~ . . . , X3itl solve 

m a x  J2i (x) = Zj c2ij xj ,  (2nd level) 
X21 

where X 3 i  I ~ . . . , X3ili solve 

max  f3il (x) = Zic3i l iXi;  (3rd level) 
X311 

CAOR 2 3 - 1 - G  - 
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Fig. 5. Decentralizd hierarchical structure. 

max,f3it, (x) = Ej c3it, j XJ; 
X3iti 

s.t .  A 1 x  1 -[- A2iXl / -1-  A3ilX3i  1 -I- - . .  -)- A3itix3iti ~ b, 

xj>~O, j =  1 , 2 , . . . , n ,  

for  i = 1 , 2 , . . . ,  s, which can be solved by the following auxiliary p rob lems  [a combina t ion  of  (14) 
and ( 1 7 ) ] :  

max  A, (19) 

s.t. x c X, 

j[/,Xl (Xl) ~ /~I, 

#f, [fl (x)] >1 A, 

~x,,(xli) >/AI, 

# f 2 , [ f l i ( x ) ]  /> A, 

#];,k[f2ik(x)] >~ AI k = 1 , . . . , t i ,  

A e  [0, 1], 

where X denotes  the const ra in t  set o f  (18). 
On the other  hand,  in m a n y  cases the const ra in t  set must  be considered al together  for  D M s  in all 

levels and divisions. We might  then consider all the D M s  in the same level as a group.  In this way, 
T L D P P  is equivalent  to a T L P P  with one D M  in the first level, s D M s  in the second level and 
t = Eiti D M s  in the third level. To  discuss this problem,  let us first definefki(x) and Xki [i = 1 when 
k = 1, i =  1 , . . . , s  when k = 2 and i = 1 , . . . , t  ( =  tl + t2 + ' " t s )  when k = 3] as the objective 
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function and control variable vectors of the kth-level ith-division DM, respectively, and cgij as the 
cost coefficient of the decision variable xj , j  = 1 ,2 , . . . ,  n, for the ith-division of the kth-level. Then, 
by extending (11) and (15), the TLDPP can be formulated as: 

max3ql(X) = EjClijXj; (lst level) (20) 
Xll 

where X21 ~ X22 ~ . . . ~ X2s ~ X31 ~ X32 ~ . • • ~ X3t solve 

max f21 (x) = Zjc21jxj; (2nd level) 
X21 

max f2s (x) = Ej casjxj; 
X2s 

where X31 ~ X32 ~ . . . ~ X3/ solve 

max f31 (x) = ~je31jXi; 
X31 

max At(x) =Ejc3tjxj; 
X3t 

s . t .  E mkiXki <~ b, 
Vk, i 

xj>~O, j = 1 ,2 , . . . , n .  

For the second level, we have the following auxiliary problem: 

max A, 

s.t. 

(3rd level) 

x E X ,  

f £ X l l ( X 1 1 )  > AI, 

#fll [fll (X)] ~ )k, 

#f2, [ f 2 i ( x ) }  ~> A,  

A e [0, 1], 

i =  1 , . . . , s ,  

which is similar to (14). By considering the satisfactory solution, DMs in the first and second levels 
then refine their membership functions which are further passed to the third level. The third-level 
DMs have: 

max A, (22) 

s.t. x c X,  

/£xH ( X l l )  >t  AI and # f n  [ f l l ( X ) ]  >/  )~' 

#x_,, (x21) >i AI and #f.,t [f21 (x)] >~ A, 

#x2s(X2s) ~> AI and #f2,[f2s(x)]/> A, 

#f3,[f3i(x)] >~ A, i =  1 ,2 , . . . , t ,  

A c  [0, 1], 

whose solution will be a satisfactory solution for the TLDPP under presumed phenomenon. If the 
solution does not satisfy some of the DMs, an interactive process as discussed above should be 
considered. 

Because the constraint set or feasible domain is not separable, DMs in the same level may need to 
reach solutions simultaneously. This problem, or a multi-objective decision-making problem, does 
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not necessarily become a single-person decision-making problem as pointed out by Bard [1]. If a 
parallel computer system is available, which is not uncommon nowadays, multi-person decision- 
making processes can be carried out as a single-person decision-making problem in terms of 
techniques. Philosophically, it is also natural to use multi-objective decision-making methods to 
model multi-person decision-making problems if their feasible domain is mutually dependent and 
inseparable. However, the general hierarchical structure as shown in Fig. 5 can be achieved during 
interactive processes. While re-examining and changing membership (preference) functions, only 
direct upper and lower-level DMs current satisfactory objective values and decisions are considered. 
That is, the relationship of the hierarchy structure is explicitly reflected in (re)forming membership 
functions. In this way, our proposal of (21) and (22) indeed solves a general MLD P  problem. 

5. C O N C L U D I N G  R E M A R K S  

Bard's grid search algorithm first uses a parametric approach to obtain an efficient solution and 
then checks if this solution satisfies Stackelberg optimal conditions until an efficient Stackelberg 
solution is reached. On the other hand, Wen and Hsu's two-phase approach first locates the 
Stackelberg solution and then checks if it is Pareto-optimal. If not, a multiple objective optimization 
technique is further used to obtain efficient solutions as final solutions. Both methods basically 
follow a classical multiple-level decision-making process with some modifications from multiple 
objective decision-making concepts. By following Lai's concepts, the proposed decision-making 
process proceeds from top to bottom in a natural and straightforward m an n e r - - a  boss supervises 
the solution search direction, and explicitly considers and displays preference information through 
membership functions. Preference information is delivered from upper levels to lower levels 
sequentially, and the lower-level DM solves his problem under restrictions of the upper level 
DMs'  requirements. 

Unlike lexicographic methods where higher-level objectives are only used to restrict lower-level 
feasibilities, both decision variables and objective functions are considered, and thus the proposed 
satisfactory solution should be more practical and reasonable. Since the solution search is based on 
the change of membership function instead of  vertex enumeration, even a large-scale problem can be 
solved with little computation. For  a non-linear programming problem, the proposed approach at 
least will not increase the order of non-linearity. 

Since different membership functions and operations as mentioned in Section 3 provide different 
satisfactory solutions, it is important to explore various functions and operators, as well as to allow 
DMs to change function forms and operators in the above discussed interactive processes; thereby, 
we can build a more complete decision support system for solving MLDPP.  At the same time, we 
should also extend our approach to solve non-linear, integer or mixed integer (non-linear) multi- 
level programming problems. 

Finally, we would also like to mention that input data or parameters are often imprecise or fuzzy 
(see Lai and Hwang [26, 28]) in a wide variety of hierarchical optimization problems such as defense 
problems, transportation network designs, economical analysis, financial control, energy planning, 
government regulation, equipment scheduling, organizational management, quality assurance, 
conflict resolution and so on. Developing methodologies and new concepts for solving fuzzy and 
possibilistic multi-level programming problems is a practical and interesting direction for future 
studies. 
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